Zoë Kravitz and Channing Tatum Are Reportedly Getting Married

Twitter // @kaitmcnab

After two years of courtship, actors Zoë Kravitz and Channing Tatum are reportedly engaged. We honestly couldn’t be happier for these two! But do you know how they met and became a couple?

Despite being together for two years, the couple is very private about their relationship. They have only appeared together publicly a few times, such as the Met Gala in 2021. We really hope to see more of them in the future. Congratulations, guys. Read on to find out more details about Zoë and Channing’s dating history.

The Engagement Announcement

Zoë Kravitz and Channing Tatum did not officially announce their engagement. However, fans were quick to notice something. On October 28, the couple dressed up for Halloween as Rosemary and her baby from Rosemary’s Baby.

Pinterest // @POPSUGAR

If you look at photos from that night, you will definitely spot Zoë wearing a beautiful engagement ring. How romantic! Also, shout out for the couple’s outfits—they both look great.

The Dating History

Both Zoë Kravitz and Channing Tatum have been married before. Kravitz was in a marriage with Karl Glusman from 2019-2021, and Tatum was married to Jenna Dewan for over eight years before their breakup in 2018. The two met during the filming of her directorial debut.

Kravitz said that she definitely saw something in him, even from afar. In 2022, the actress told The Wall Street Journal that she was drawn to Tatum due to his feminism and courage to explore and play a darker character. If you’ve watched Tatum’s films, you’ll notice that he mostly plays the boy next door, the good guy, the love interest. Obviously, Kravitz’s movie has managed to get a different side of him. Great work!

Both Humans and AI Hallucinate — But Not in the Same Way

In the past six months, the advent of highly capable large language models (LLMs) like GPT-3.5 has captivated the world’s attention. However, as users uncover their fallibility, trust in these models has waned, revealing that they share an imperfect nature with humans.

Unveiling the Enigmatic Realm: Humans and AI Hallucinate Differently
Both AI and Humans Hallucinate

How Humans Hallucinate

Humans possess the ability to hallucinate and generate false information intentionally or unintentionally. Cognitive biases, known as “heuristics,” often underlie these tendencies.

These biases arise out of necessity. With limited cognitive capacity, we can only process a fraction of the information bombarding our senses. Consequently, our brains rely on learned associations to fill in the gaps and swiftly respond to questions or challenges.

They can lead to flawed judgment. For instance, automation bias inclines us to favor information generated by automated systems, like ChatGPT, over non-automated sources, causing us to overlook errors or act upon false information. The halo effect influences our subsequent interactions based on initial impressions.

How AI Hallucinates

In the context of LLMs, hallucination takes on a different meaning. LLMs do not engage in hallucination to efficiently comprehend the world by conserving limited mental resources. Instead, hallucination describes the failure to predict an appropriate response to a given input.

How AI Hallucinates

However, there are similarities between how humans and LLM hallucinate, as both attempt to fill in the gaps. LLMs generate responses by predicting the most likely word to follow in a sequence based on preceding context and learned associations.

Like humans, LLMs strive to predict the most plausible response, but unlike humans, they lack an understanding of the content they produce. As to why LLM hallucinate, factors including training on flawed or insufficient data, programming choices, and reinforcement through human-guided training show up.

Pursuing Improvement Together

In reality, the shortcomings of both humans and technology are intertwined, necessitating a collaborative approach to rectify the issues. Here are some strategies for achieving this:

Responsible Data Management Addressing biases in AI requires diverse and representative training data, along with bias-aware algorithms and techniques such as data balancing to eliminate skewed or discriminatory patterns.

Transparency and Explainable AI Despite efforts to address biases, they can persist and be challenging to detect. Studying how biases enter and propagate within AI systems allows for improved understanding and transparency in decision-making processes—an essential aspect of explainable AI.

Prioritizing the Public Interest Achieving unbiased AI systems involves human accountability and integrating human values. Ensuring diverse representation among stakeholders, encompassing different backgrounds, cultures, and perspectives, is key.

Pursuing Improvement Together

By collaborating in these ways, we can build smarter AI systems that help us recognize and mitigate our hallucinations. In healthcare, AI assists in analyzing human decisions, identifying inconsistencies, and prompting clinicians to ensure improved diagnostic accuracy while maintaining human accountability.

While we strive to enhance the accuracy of LLMs, we must not disregard how their current fallibility serves as a mirror reflecting our imperfections.